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Abstract. For any given loopless graph G, we introduce Q - deformations of its
Postnikov-Shapiro algebras counting spanning trees and forests. We determine the
total dimension of the algebras; our proof also gives a new proof of the formula for
the total dimensions of the usual Postnikov-Shapiro algebras.

Résumé. Pour tout graphe sans boucles G, nous introduisons Q - déformations de
ses algèbres de Postnikov-Shapiro comptant les arbres et les forêts. Nous déterminons
la dimension totale des algèbres; notre preuve donne aussi une nouvelle preuve des
dimensions des algèbres usuelles de Postnikov-Shapiro.
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1 Introduction and main results

The Postnikov-Shapiro algebras (PS-algebras for short) have been introduced and stud-
ied in [10]. There are a few generalizations of those algebras: in [1] and [5], under the
name zonotopal algebras, a generalization of PS-algebras algebra was introduced for (real)
arrangements. In fact, this topic has its origin in earlier papers [12] and [11], which were
motivated by the following problem posed by V. Arnold in [2]:

Describe algebra Cn generated by the curvature forms of tautological Hermitian linear
bundles over the type A complete flag variety F ln.

Surprisingly enough, it was observed and conjectured in [12], that dimQ Cn = Fn,
where Fn denotes the number of spanning forests of the complete graph Kn on n labeled
vertices. This conjecture has been proved in [11], and became a starting point for a wide
variety of generalizations, including discovery of PS-algebras.

The PS-algebras have a number of interesting properties, including an explicit for-
mula for their Hilbert polynomials. Also these algebras are related to Orlik-Terao alge-
bras [9], for more details, see for example [3].
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In our paper we will use the following basic notation:

Notation 1. We fix a field of zero characteristic K (for example C or R).
We will work only with graphs without loops, but possibly with multiple edges. We

denote by E(G) and V(G) the set of edges and vertices of G respectively. The cardi-
nalities of E(G) and V(G) are denoted by e(G) and v(G) respectively. The number of
connected components of G is denoted by c(G).

We denote the set {1, 2, . . . , (a− 1), a} by [a].

The following algebra CG (counting spanning forests) associated to an arbitrary vertex-
labeled graph G was introduced in [10]. Let G be a graph without loops on the vertex
set [n]. Let ΦG be the graded commutative algebra over K generated by the variables
φe, e ∈ G, with the defining relations:

(φe)
2 = 0, for every edge e ∈ G.

Let CG be the subalgebra of ΦG generated by the elements

Xi = ∑
e∈G

ci,eφe,

for i ∈ [n], where

ci,e =


1 if e = (i, j), i < j;
−1 if e = (i, j), i > j;

0 otherwise.

(1.1)

Observe that we assume that CG contains 1.

Let us describe all relations between Xi. Namely given a graph G, consider the ideal
JG in the ring K[x1, · · · , xn] generated by

pI =

(
∑
i∈I

xi

)dI+1

,

where I ranges over all nonempty subsets of vertices, and dI is the total number of edges
between vertices in I and vertices outside I, i.e., belonging to V(G) \ I. Define the algebra
BG as the quotient K[x1, . . . , xn]/JG.

Theorem 1 (cf. [10]). For any graph G, the algebras BG and CG are isomorphic, their total
dimension over K is equal to the number of spanning forests in G.

Moreover, the dimension of the k-th graded component of these algebras equals the number of
spanning forests F of G with external activity e(G)− e(F)− k.

In particular, the second part of Theorem 1 implies that the Hilbert polynomial of CG
is a specialization of the Tutte polynomial of G.
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Corollary 1. Given a graph G, the Hilbert polynomial HCG(t) of the algebra CG is given by

HCG(t) = TG

(
1 + t,

1
t

)
· te(G)−v(G)+c(G).

In the recent paper [7] the second author found the following important property of
these algebras.

Theorem 2 (cf. [7]). Given two graphs G1 and G2, the algebras CG1 and CG2 are isomorphic if
and only if the graphical matroids of G1 and G2 coincide. (The isomorphism can be thought of as
either graded or non-graded, the statement holds in both cases.)

Furthermore, the paper [8] contains a "K-theoretic" filtered structure of these algebras,
which distinguishes graphs (see definition inside there).

The main object of study of the present paper is a family of Q-deformations of C(G)
which we define as follows. For a graph G and a set of parameters Q = {qe ∈ K : e ∈
E(G)}, define ΦG,Q as the commutative algebra generated by the variables {ue : e ∈
E(G)} satisfying

u2
e = qeue, for every edge e ∈ G.

Let V(G) = [n] be the vertex set of a graph G. Define the Q-deformation ΨG,Q of CG as
the filtered subalgebra of ΦG,Q generated by the elements:

Xi = ∑
e: i∈e

ci,eue, i ∈ [n],

where ci,e are the same as in (1.1). The filtered structure on ΨG,Q is induced by the
elements Xi, i ∈ [n]. More concretely, the filtered structure is an increasing sequence

K = F0 ⊂ F1 ⊂ F2 . . . ⊂ Fm = ΨG,Q

of subspaces of ΨG,Q, where Fk is the linear span of all monomials Xα1
1 Xα2

2 · · ·X
αn
n such

that α1 + . . . + αn ≤ k. Note that algebra ΦG,Q has a finite dimension, then ΨG,Q has a
finite dimension, which gives that the increasing sequence of subspaces is finite. The
Hilbert polynomial of a filtered algebra is the Hilbert polynomial of the associated
graded algebra, it has the following formula

H(t) = 1 + ∑
i=1

(dim(Fi)− dim(Fi−1))ti.

In the case when all parameters coincide, i.e., qe = q, ∀e ∈ G, we denote the corre-
sponding algebras by ΨG,q and ΦG,q respectively We refer to ΨG,q as the Hecke deformation
of CG.
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Remark 1. (i) By definition, the algebra ΨG,0 coincides with CG.
(ii) If we change the signs of qe, e ∈ E′ for some subset E′ ⊆ E of edges, we obtain an

isomorphic algebra.
(iii) It is possible to write relations such as u2

e = βe or u2
e = qeue + βe where βe ∈ K. But

in the case of algebras counting spanning trees we need relations without constant terms, see
Section 5.

Example 1. (i) Let G be a graph with two vertices, a pair of (multiple) edges a, b. Consider the
Hecke deformation of its CG, i.e., satisfying qa = qb = q.

The generators are X1 = a + b, X2 = −(a + b) = −X1. One can easily check that the
filtered structure is given by

F0 = <1>; F1 = <1, a + b>; F2 = <1, a + b, ab>.

The Hilbert polynomial H(t) of ΨG,q is given by

H(t) = 1 + t + t2.

The defining relation for X1 is given by

X1(X1 − q)(X1 − 2q) = 0.

(ii) For the same graph as before, consider the case when Q = {qa, qb}, q2
a 6= q2

b.
The generators are the same: X1 = a + b, X2 = −(a + b) = −X1. Since

X3
1 = q2

aa + q2
bb + 3(qa + qb)ab =

3(qa + qb)

2
X2

1 −
q2

a + 3q2
b

2
a−

3q2
a + q2

b
2

b

=
3(qa + qb)

2
X2

1 −
3q2

a + q2
b

2
X1 + (q2

a − q2
b)a,

we have

F0 = <1>; F1 = <1, a + b>; F2 = <1, a + b, qaa + qbb + 2ab>; F3 = <1, a, b, ab>.

The Hilbert polynomial H(t) of ΨG,Q is given by

H(t) = 1 + t + t2 + t3.

Observe that in this case the algebra ΨG,Q coincides with the whole ΦG,Q as a linear space, but
has a different filtration. The defining relation for X1 is given by

X1(X1 − qa)(X1 − qb)(X1 − qa − qb) = 0.

The first result of the present paper is about Hecke deformations.
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Theorem 3. For any loopless graph G, filtrations of its Hecke deformation ΨG,q induced by Xi
and induced by the algebra ΦG,q coincide. Furthermore, the Hilbert polynomial HΨG,q(t) of this
filtration is given by

HΨG,q(t) = TG

(
1 + t,

1
t

)
· te(G)−v(G)+c(G),

i.e., it coincides with that of CG.

The latter result implies that cases when not all qe are equal are more interesting than
the case of the Hecke deformation. We will work with weighted graphs, i.e. when each
edge e has non-zero qe ∈ K, and will simply denote the algebra for a weighted graph G
by ΨG.

Definition 2. For a loopless weighted graph G on n vertices and an orientation ~G, define the
score vector D+

~G
∈ Kn as follows(

∑
e∈E:

end(~e)=1

qe, ∑
e∈E:

end(~e)=2

qe, . . . , ∑
e∈E:

end(~e)=n

qe

)
,

where end(~e) is the final vertex of oriented edge~e.

Theorem 4. For any loopless weighted graph G, the dimension of the algebra ΨG is equal to the
number of distinct score vectors, i.e.

dim(ΨG) = #{D ∈ Kn : ∃~G such that D = D+
~G
}.

As a consequence of Theorems 3 and 4, we obtain the following known property.
(See bijective proofs in [6] and [4].)

Corollary 2. For any graph G, the number of its spanning forests is equal to the number of
distinct vectors of incoming degrees corresponding to its orientations.

Our proof of Theorem 4 is very simple and it gives a new proof about total dimen-
sion of an original algebra. Unfortunately, our proof works only for weighted graphs
(nonzero parameters). A zero parameter does not play role in score vectors, so we do
not even have a conjecture.

Problem 1. What is the dimension of ΨG,Q in the case when some of qe are non-zero and few are
zero?

The structure of the paper is as follows. In Section 2 we prove Theorem 3 and discuss
Hecke deformations. In Section 3 we describe the basis of Q-deformations and present
a proof of Theorem 4. In Section 4 we consider "generic" cases and provide examples of
Hilbert polynomials. In Section 5 we present Q-deformations of the Postnikov-Shapiro
algebra which counts spanning trees instead of spanning forests.
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2 Hecke deformations

Sketch of proof of Theorem 3. To settle this theorem, we need to show that if an element
y ∈ ΨG,Q has degree d, then it has the same degree in ΦG,Q.

Assume the opposite; then there exists an element y = f (X1, . . . , Xn), where f is a
polynomial of degree d, but y has degree less than d in its representation in terms of the
edges ue, e ∈ G.

Rewrite f as f = fd + f<d, where fd is a homogeneous polynomial of degree d and
deg f<d < d.

Let X̂1, . . . , X̂n be the elements in the algebra CG = ΨG,0 corresponding to the vertices.
We conclude that fd(X̂1, . . . , X̂n) should vanish. Indeed, otherwise deg fd(X1, . . . , Xn) =
d in ΦG,Q and deg f<d(X1, . . . , Xn) < d which implies that deg f (X1, . . . , Xn) = d in ΦG,Q.

By Theorem 1, we know all the relations between {X̂1, . . . , X̂n}. Namely, they are of
the form (∑i∈I X̂i)

dI+1, where I is an arbitrary subset of vertices and dI is the number of
edges between I and its complement V(G) \ I.

Using this, we obtain

fd(x1, . . . , xn) = ∑
I⊆V(G):
dI≤d−1

rI(x1, . . . , xn) ·
(

∑
i∈I

xi

)dI+1

,

where rI is a homogeneous polynomial of degree d− dI − 1. However, it is possible to
rewrite (∑i∈I Xi)

dI+1 as an element of a smaller degree in terms of {Xi, i ∈ I}. Hence,
there is polynomial g of degree less than d such that y = g(X1, . . . , Xn).

The second part follows from the first one. It is enough to consider graded lexico-
graphic orders of monomials in {ue, e ∈ G} and {φe, e ∈ G}. For these orders, we have
a natural bijection between the Gröbner bases of ΨG,q and of CG. Hence, their Hilbert
polynomials coincide.

Corollary 2 shows that the dimension of a Hecke deformation is equal to the number
of lattice points of the zonotope Z ∈ Rn, which is the Minkowski sum of edges, i.e,

ZG :=
⊕
e∈G

Ie,

where, for edge e = (i, j), Ie is the segment between points (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0) and

(0, . . . , 0︸ ︷︷ ︸
j−1

, 1, 0, . . . , 0). In [5] Holtz and Ron defined the zonotopal algebra for any lattice

zonotope, whose dimension is equal to the number of lattice points. By their defini-
tion PS-algebra BG is the zonotopal algebra corresponding to ZG. We think that Hecke
deformations should be extended on a case of zonotopal algebras.
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Problem 2. Define Hecke deformations of zonotopal algebras.

Since there is no definition of zonotopal algebras in terms of square-free algebras, we
should work with quotient algebras. In the case of Hecke deformations of PS-algebras
Proposition 9 from Section 3 gives all defining relations between elements Xi, i ∈ [n].

Theorem 5. Let G be a graph and q ∈ K (qe = q, ∀e ∈ G). Then all defining relations between
Xi, i ∈ [n] are given by

~dI

∏
k=−~dI

(
∑
i∈I

Xi − qk

)
= 0,

where I is any subset of vertices and ~dI (respectively ~dI) is the number of edges e = (i, j) ∈ G :
i ∈ I, j /∈ I and i > j (respectively i < j).

3 Basis of Q-deformations

For the next proofs, we need to describe a basis of the algebra ΦG. For a subset E′ of the
edges, we define

αE′ = ∏
e∈E′

ue

qe
.

Since qe 6= 0 this basis is well defined. For an element z = ∑E′ zE′αE′ ∈ ΦG, we define
the vector z̃ = [z̃E′ ]E′⊆E ∈ K2e(G)

, where

z̃E′ = ∑
E′′⊆E′

zE′′ .

It is clear that from this vector we can reconstruct z, also it is easy to describe the product
on these coordinates. Furthermore the unit element I is given by I := 1̃ = [1]E′⊆E.

Lemma 6. Elements corresponding to [0, . . . , 0, 1, 0, . . . , 0] form a linear basis of ΦG. This basis
has the following property: let y, z ∈ ΦG, be elements of the algebra, then the sum of elements is
the sum by coordinates

(̃y + z) = ỹ + z̃,

and the product is the Hadamard product of coordinates

(̃yz) = ỹ ◦ z̃.

Consider the following bijection between subsets of E(G) and orientations of G. For
the subset E′ ⊆ E we define the following orientation: if e ∈ E′, then the orientation is
from the biggest end to the smallest, otherwise the orientation is the opposite.
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Lemma 7. The element Xi in coordinates is given by

X̃i =

 D+
~G
(i)


~G

−

 ∑
e∈E:

ci,e=−1

qe

 · I,

where D+
~G
(i) is i-th coordinate of a score vector D+

~G
.

We use in the proof of Theorem 4 the following elements

Ãi :=

 D+
~G
(i)


~G

.

We need another technical lemma.

Lemma 8. For an element R ∈ ΦG, the dimension of the space generated by R (i.e,
span<1, R, R2, . . .>) is equal to the number of different coordinates of the vector R̃.

Now we can prove Theorem 4.

Proof of Theorem 4. By Lemma 7 we can change the set of generators Xi, i ∈ V(G) to the
set Ai, i ∈ V(G). If two orientations have the same score vector, then the corresponding
coordinates in I and in Ãi, i ∈ V(G) coincide. Using Lemma 6, we get that they coincide
for any element from algebra ΨG, hence,

dim(ΨG) ≤ #{D ∈ Kn : ∃~G such that D = D+
~G
}.

For the converse, we consider an element

R = r0 + r1A1 + . . . + rn An,

where ri ∈ Q and are generic.
The coordinates R̃ are non-zero and, for two orientations, they coincide if and only

if their score vectors coincide. Then, by Lemma 8 the dimension of the subalgebra
generated by R is equal to number of different score vectors. Since R belongs to ΨG, we
obtain

dim(ΨG) ≥ #{D ∈ Kn : ∃~G such that D = D+
~G
},

which with the upper bound gives equality.

Using Lemma 8 we can calculate the minimal annihilating polynomial for any linear
combination of vertices.
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Proposition 9. Given a weighted graph G, for an element X · t = X1t1 + . . . + Xntn, t ∈ Kn

the minimal annihilating polynomial of it is given by

∏
s∈DI

(X · t− s + z) = 0,

where
DI = {D+

~G
· t : ~G} and z = ∑

i, e:
ci,e=−1

qeti.

In the case of Hecke deformations it gives all defining relations between Xi, i ∈ V(G),
see Theorem 5.

Problem 3. Find all relations between Xi, i ∈ V(G). In other words, define ΨG,Q as a quotient
algebra of the polynomial ring.

4 Case E = E1 t . . . t Ek and generic q1, . . . , qk ∈ K
We cannot describe the Hilbert polynomial of ΨG,Q. We suggest to start from the follow-
ing type of algebras: when different parameters are in a generic position. In this case we
know the total dimension in terms of forests.

Theorem 10. Let G be a graph, given a partition E = E1 t . . . t Ek of edges and generic
q1, . . . , qk ∈ K (qe = qi, for e ∈ Ei). Then the dimension of the algebra ΨG,Q equals the number
k-tuples of spanning forests such that Fi ⊆ Ei. In other words,

dim(ΨG,Q) =
k

∏
i=1

#{F ⊆ Ei | F is a forest}.

Problem 4. What is the Hilbert polynomial HSΨG,Q in the case E = E1 t . . . t Ek and generic
q1, . . . , qk ∈ K?

It seems that it is impossible to reconstruct the Hilbert polynomial from the Tutte polynomial.
For example, let G be the graph on two vertices with k multiple edges, then its Tutte polynomial
is given by

TG(x, y) = x + y + . . . + yk−1,

and the Hilbert polynomial, when each edge has a self generic parameter is

HSΨG,Q = 1 + t + . . . + t2k−1.

In each case it is not a specialization of the Tutte polynomial.

Here we present the Hilbert polynomial of algebras for complete graphs. Our tables
correspond to algebras (1) with the same parameter; (2) with the same parameters except
for one edge and (3) where all parameters are generic. By Theorem 10 we know their
total dimensions, in the first case we also know the Hilbert polynomial.
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4.1 Hilbert polynomials of CKn and ΨKn,q

Graph \H(t) 0 1 2 3 4 5 6 7 8 9 10
K2 1 1
K3 1 2 3 1
K4 1 3 6 10 11 6 1
K5 1 4 10 20 35 51 64 60 35 10 1

4.2 Hilbert polynomials of ΨKn,Q, when E1 = E(Kn)\{e} and E2 = {e}
Graph \H(t) 0 1 2 3 4 5 6 7 8 9 10
K2 1 1
K3 1 2 3 2
K4 1 3 6 10 13 11 4
K5 1 4 10 20 35 53 72 83 72 38 8

4.3 Hilbert polynomials of ΨKn,Q, when Q is generic

Graph \H(t) 0 1 2 3 4 5 6 7 8 9 10 11
K2 1 1
K3 1 2 3 2
K4 1 3 6 10 15 19 10
K5 1 4 10 20 35 56 84 120 165 220 217 92

Note that in the last case for K5, the 11th graded component is not empty, because
otherwise the total dimension would be at most 1 + 4 + 10 + .. + 220 + 286 = 1001, but
by Theorem 4 the total dimension is 2(

5
2) = 1024.

5 Deformations of Postnikov-Shapiro algebras counting
spanning trees

To construct algebras counting spanning trees of G we need to add to the algebra ΦG,Q
several relations corresponding to cuts of G.

For a connected graph G with fixed vertex g ∈ V(G) and a set of parameters Q =
{qe ∈ K : e ∈ E(G)}, define ΦT

G,Q as the commutative algebra generated by the variables
{ue : e ∈ E(G)} satisfying

u2
e = qeue, for every edge e ∈ G;
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∏
e=(i,j) i∈I,j/∈I:

ci,e=1

ue ∏
e=(i,j) i∈I,j/∈I:

ci,e=−1

(ue − qe) = 0, for every subset I ⊆ V(G) \ {g}.

Let V(G) = [n] be the vertex set of a graph G. Define the algebra ΨT
G,Q as a filtered

subalgebra of ΦT
G,Q generated by the elements:

Xi = ∑
e: i∈e

ci,eue, i ∈ [n],

where ci,e are the same as in (1.1).

In the case when all parameters coincide, i.e., qe = q, ∀e ∈ G, we denote the corre-
sponding algebras by ΨT

G,q and ΦT
G,q respectively. The algebra ΨT

G,0 coincides with CT
G,

the dimension of CT
G is equal to the number of spanning trees (see [10]). We refer to ΨT

G,q

as the Hecke deformation of CT
G.

For these algebras, we have two similar theorems. The proof of Theorem 11 is similar
to Theorem 3.

Theorem 11. For any loopless connected graph G, the filtrations of its Hecke deformation ΨT
G,q

induced by Xi and induced from the algebra ΦT
G,q coincide. Furthermore the Hilbert polynomial

HΨT
G,q
(t) of this filtration is given by

HΨT
G,q
(t) = HCT

G
(t) = TG

(
1,

1
t

)
· te(G)−v(G)+c(G).

Definition 3. Orientation ~G is called a g-connected orientation if for any vertex there is a path
to g. The corresponding score vector D+

~G
is called a g-connected score vector.

Theorem 12. For any loopless weighted connected graph G with a root g, the dimension of the
algebra ΨT

G is equal to the number of distinct g-connected score vectors.

The proof of Theorem 12 is more complicated than Theorem 4, the key idea is that
ΨT

G is a quotient algebra of ΨG.
Note that in Theorem 12 (unlike Theorem 4) it is not true that if we change signs of

some qe, the dimension remains the same. Also we do not have combinatorial analogue
of Theorem 10.

Problem 5. Let G be a connected graph with a root g, given a partition E = E1 t . . . t Ek of
edges and generic q1, . . . , qk ∈ K (qe = qi, for e ∈ Ei). Describe the dimension of the algebra
ΨT

G,Q in terms of trees and forests.

Remark 2. We can construct Q-deformations of internal algebras (see definitions in [1] and [5]),
although there is no definition of internal algebra in terms of edges. For this we should add
relations also for subsets I 3 g. These algebras count strong-connected score vectors, see more
details inside full version.
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